

Tungaloy Report TE0908-D1

Schneidstoffserie

T3130

Eine Kombination aus verschleißfester, neuartiger Beschichtung und speziell entwickeltem Substrat für hervor-

ragende Schlagfestigkeit!

Verbesserte Oberflächenbeschaffenheit

Glatte Beschichtungsoberfläche

- Die glatte und gleichmäßige Beschichtungsoberfläche verringert die Aufbauschneidenbildung.
- Optimierte Zug- und Druckfestigkeitseigenschaften wirken einer vorzeitigen Rissbildung entgegen.

Verstärkte Haftung zwischen Substrat und Beschichtung

Neu entwickeltes Hartmetallsubstrat

 Das neu entwickelte Hartmetallsubstrat ermöglicht eine verbesserte Haftung zwischen Substrat und Beschichtung.
 Das Resultat sind längere Standzeiten.

Extrem verbesserte Schlagfestigkeit


Hartmetallsubstrat für erhöhte Zähigkeit

 Neuentwickeltes, mit Kobalt angereichertes Substrat für gesteigerte Zähigkeit und stark verbesserte Schlagfestigkeit.

Verbesserte Verschleißfestigkeit

Gleichmäßig kolumnar angeordnete Ti(C,N) Kristalle in der Beschichtung

• Das kolumnar stabilisierte Kristallgefüge unterdrückt die vorzeitige Rissbildung und bietet exzellente Bruchfestigkeit sowie verbesserte Verschleißfestigkeit.

Herkömmliche Sorte

- Ungleichmäßig angeordnete Kristalle unterschiedlicher Größe
- Rissbildung in verschiedene Richtungen

T2120

- Gleichmäßig ausgerichtete Kristallstruktur
- Rissbildung wird weitestgehend unterdrückt

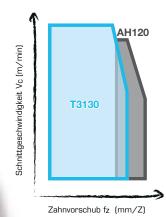
Die gleichmäßig ausgerichteten Kristalle halten auch starkem Druck stand. Diese hervorragende Bruchfestigkeit führt zu langen Standzeiten.

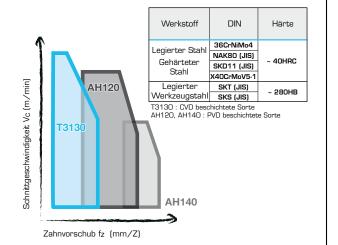
			m	Ö	
Wendeschneidplatten Form und Abmessungen	Artikel Nr. (Metrisch) Artikel Nr. (Inch)	Toleranz	Schutzfase	T3130 Sorte	TAC Fräser
120.4 9.525 420° +11° +11° +20°	ANMTO9T3PPPR-MJ	М	mit	•	EPN09
14 +11° +20°	ANMT1404PPPR-MJ ANMT1404PPPR-MJ	М	mit	•	EPN14 TPN14
11.6	ASMT11T304PDPR-MJ ASMT11T304PDPR-MJ	М	mit	•	
11.6	ASMT11T308PDPR-MJ ASMT11T308PDPR-MJ	М	mit	•	EPS11
71.6 2 3.7 2 1.2	ASMT11T312PDPR-MJ ASMT11T312PDPR-MJ	М	mit	•	TPS11
11.6 % 1.8	ASMT11T316PDPR-MJ	М	mit	•	
16.9 g	ASMT170504PDPR-MJ ASMT170504PDPR-MJ	М	mit	•	
16.9	ASMT170508PDPR-MJ ASMT170508PDPR-MJ	M	mit	•	
16.9	ASMT170512PDPR-MJ ASMT170512PDPR-MJ	M	mit	•	EPS17 TPS17
16.9 % 1.6	ASMT170516PDPR-MJ ASMT170516PDPR-MJ	М	mit	•	
16.9 5.6 8 7 8	ASMT170532PDPR-MJ	М	mit	•	

Wendeschneidplatten Form und Abmessungen	Artikel Nr. (Metrisch) Artikel Nr. (Inch)	Toleranz	Schutzfase	T3130 Sorte	TAC Fräser
4-f _E 6	RDMT1204ZDPN-MJ RDMT1204ZDPN-MJ	М	mit	•	ERD12 TRD12
4-t ₆ 6	RDMW1204ZDSN RDMW1204ZDSN	M	mit	•	ERD12 TRD12
4-r ₆ 8	RDMT1606ZDPN-MJ RDMT1606ZDPN-MJ	M	mit	•	ERD16 TRD16
4-f ₆ 8	RDMW1606ZDSN RDMW1606ZDSN	М	mit	•	ERD16 TRD16
4.76	SDMT1204AFPN-MJ SDMT1204AFPN-MJ	М	mit	•	EAD12 TAD12
4.76	SDMT1204PDSR-MJ SDMT1204PDSR-MJ	М	mit	•	EPD12 TPD12
3.18	SEKN1203AGTN SEKN1203AGTN	к	mit	•	EME4400 TME4400
12.7	SEKR1203AGSR-MJ SEKR1203AGSR-MJ	к	mit	•	EME4400 TME4400
12.7	SEKR1203AFSR-MJ SEKR42AFSR-MJ	К	mit	•	TGE44001 alter Artikel
45° × 20° × 3.18	SEKN1203AFTN-16 SEKN42AFTN16	к	mit	•	EGE4400 alter Artikel
15.875	SEKR1504AFSR-MJ SEKR1504AFSR-MJ	к	mit	•	

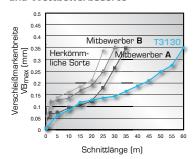
Wendeschneidplatten Form und Abmessungen	Artikel Nr. (Metrisch) Artikel Nr. (Inch)		Schutzfase	T3130 Sorte	TAC Fräser
12.7	SPKN1203EDTR SPKN42STR		mit	•	TGP4100
75	SPKR1203EDSR-MJ SPKR42SSR-MJ	К	mit	•	
13.6	SWMT1304PDPR-MJ SWMT1304PDPR-MJ	M	mit	•	EPW13 TPW13
14.7	SWMT13T3AFPR-HJ SWMT13T3AFPR-HJ	M	mit	•	
13.9	SWMT13T3AFPR-MJ SWMT13T3AFPR-MJ	M	mit	•	EAW13 TAW13
13.9	SWMW13T3AFTR SWMW13T3AFTR	M	mit	•	
900	TPKN2204PPTR TPKN43ZTR	К	mit	•	TSP4000IA
90" 4.76	TPKR2204PDSR-MJ TPKR43ZSR-MJ	к	mit	•	TFP4000IA

Wendeschneidplatten Form und Abmessungen	Artikel Nr. (Metrisch) Artikel Nr. (Inch)	Toleranz	Schutzfase	T3130 Sorte	TAC Fräser
7.94 V ₆ 1.5	WPMT05H315ZPR-ML WPMT05H315ZPR-ML	M	mit	•	EXPO5
7,94	WPMW05H315ZPR WPMW05H315ZPR	M	mit	•	EAPUS
9,525	WPMT06X415ZPR-ML WPMT06X415ZPR-ML	M	mit	•	EXP06
9,525	WPMW06X415ZPR WPMW06X415ZPR	M	mit •		TXP06
6.35 12.87 v ₆ 1.5	WPMT080615ZPR-ML WPMT080615ZPR-ML	M	mit	•	EXP08
6.35	WPMT080615ZSR WPMT080615ZSR	M	mit	•	TXP08
7	WPMT090725ZPR-ML WPMT090725ZPR-ML	М	mit	•	EXP09
7 7 6 2.5	WPMT090725ZSR WPMT090725ZSR	M	mit	•	TXP09




Technische Informationen

Anwendungsgebiete


Werkstoff	DIN	Härte			
Niedrig	C10E				
legierter Stahl	C15E	110 ~ 180HB			
Kohlenstoff-	C25C	110 ~ 160HB			
stahl	ST42.3				
Stahl mit mittlerem	C35E				
Kohlenstoffgehalt	C45E	150 ~ 280HB			
(≤ 0.5%C)	C50E				
Stahl mit hohem	C55E				
Kohlenstoffgehalt	C60E	180 ~ 350HB			
(> 0.5%C)	42CrMo4	160 ~ 350HB			
Legierter Stahl	41CrS4				
T0400 0VD					

: CVD beschichtete Sorte : PVD beschichtete Sorte

Verschleißverhalten

Äußerst geringer Verschleiß gegenüber herkömmlicher Sorte und Wettbewerbssorte

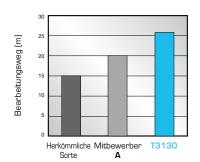
Werkzeug : 45° Planfräser ø 100 (5 Zähne) Wendeschneid-

platten : für o.g. Fräser geeignet : vertikales BAZ (BT50/22kw) Maschine Werkstoff : 42CrMo4 (167HB ~ 172HB)

Schnittge-schwindigkeit : V_C = 150 m/min : ap = 2.0 mm Schnitttiefe Zahnvorschub : $f_Z = 0.25 \text{ mm/Z}$

Kühlung : ohne

Herkömmliche Sorte



Mitbewerber B

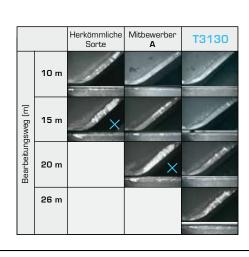
Sowohl die herkömmliche Sorte als auch die Wettbewerbssorte zeigten starken Verschleiß und Bruch. Mit T3130 blieb der Verschleiß gering und die Standzeit konnte signifikant erhöht werden.

Standzeit

Im Vergleich mit der herkömmlichen Sorte und der Wettbewerbssorte zeigten sich bei T3130 auch nach 10 m Bearbeitungsweg keine Ausbrüche. Standzeiten konnten somit erhöht werden.

: TME4406RI (8 Zähne) Werkzeug Wendeschneid-

platte : Vergleichbar mit SEEN Typ


Maschine : vertikales BAZ (BT50/15kw)

Werkstoff : C50 Schnittge

: V_C = 250 m/min Schnitttiefe : ap = 1.5 mm Zahnvorschub : $f_Z = 0.15 \text{ mm/Z}$: ohne

Kühlung

Standzeit konnte um 70% gesteigert werden!

Schnittdaten

Werkstoff	DIN	Härte	Schnittgeschwindigkeit Vc (m/min)		
Niedrig legierter Stahl Kohlenstoffstahl	C10E C15E C25E ST42.3	110 ~ 180HB	150 - 300		
Stahl mit mittlerem Kohlenstoffgehalt (≤ 0.5% C)	C35E C45E C50E	150 ~ 280HB	150 ~ 280		
Stahl mit hohem Kohlenstoffgehalt (> 0.5% C) Legierter Stahl	C55E C60E 42CrMo4 41CrS4	180 ~ 350HB	150 ~ 250		
Legierter Stahl Gehärteter Stahl	36CrNiMo4 NAK80 (JIS)	~ 40HRC	100 - 200		
Legierter Werkzeugstahl	SKD11 (JIS) X40CrMoV5-1 SKT (JIS) SKS (JIS)	~ 280HB	100 - 180		

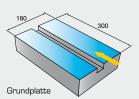
Werkstoff

: TMD4408RI (10 Zähne) Werkzeug

Wendescheid-SDEN42ZTN20 platte Sorte T3130

Schnittge-schwindigkeit : V_C = 179 m/min Schnitttiefe $: a_p = 1 \text{ mm}$ Zahnvorschub : $f_Z = 0.14 \text{ mm/Z}$

Kühlung : ohne


Herkömmliches Substrat Werkstoff

: TMD4408RI (10 Zähne) Werkzeua

Wendescheid-

· Herkömmliche WSP (CVD beschichtet)

Schnittge-schwindigkeit : V_C = 179 m/min Schnitttiefe : $a_p = 1 \text{ mm}$ Zahnvorschub : $f_Z = 0.14 \text{ mm/Z}$

Resultat

Im unterbrochenen Schnitt zeigte die herkömmliche Sorte unvorhergesehenen Bruch und somit. starke Standzeitschwankungen. Mit Einsatz der neuen T3130 blieb die Bearbeitung stabil und ein Versagen der Wendeschneidplatte wurde verhindert. Die Anzahl der gefertigten Teile war signifikant höher.

Praktische Beispiele

Werkstoff

Werkzeug EPS17032RSB (3 Zähne)

Wendescheid-ASMT170508PDPR-MJ platte

Sorte T3130

Schnittge-schwindigkeit : V_C = 160 m/min

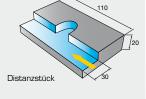
: ap = 5 mm x 3 Durchgänge Schnitttiefe Zahnvorschub : $f_Z = 0.1 \text{ mm/Z}$

Kühlung : ohne

Derzeit eingesetztes Werkzeug

: C50E

Werkzeua Mitbewerber Schulterfräser


(3 Zähne)

Wendescheid-platte PVD beschichtet

Schnittge-schwindigkeit: V_C = 120 m/min

: ap = 4 mm x 4 Durchgänge Schnitttiefe

Zahnvorschub : $f_Z = 0.08 \text{ mm/Z}$

Resultat

Das zuvor eingesetzte Werkzeug konnte unter instabilen Verhältnissen, bedingt durch Bruch der Wendeschneidplatte, lediglich 5 Teile fertigen. T3130 fertigte kontinuierlich 7 Teile und erhöhte somit die Produktivität um 70%.

Werkstoff :42CrMo4 : TXP08050R (3 Zähne) Werkzeug

Wendescheid-WPMT080615ZPR-ML

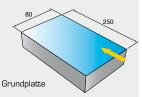
platte Sorte T3130

Schnittge-schwindigkeit : V_C = 260 m/min

 $: a_p = 1 \text{ mm x 2 Durchgänge}$ Schnitttiefe

Zahnvorschub : $f_Z = 1.42 \text{ mm/Z}$: ohne

Derzeit eingesetztes Werkzeug


Werkstoff

: Wettbewerb Fräser (3 Zähne) Werkzeua : PVD beschichtet

Wendescheidplatte

Schnittge-schwindigkeit : V_C = 260 m/min Schnitttiefe : ap = 1 mm x 2 Durchgänge

Zahnvorschub : $f_Z = 1.42 \text{ mm/Z}$

Resultat

Der Wettbewerb konnte lediglich 20 Teile pro Schneidkante fertigen. Unter Einsatz von Wendeschneidplatten in T3130 wurden 35 Teile pro Schneidkante gefertigt und die Standzeit um 70% erhöht

Tungaloy Europe GmbH

Elisabeth-Selbert-Str. 3 D - 40764 Langenfeld Tel. +49 (0 21 73) 9 04 20 -0 Fax +49 (0 21 73) 9 04 20 - 18 e-mail: info@tungaloy.de www.tungaloy-eu.com

Tungaloy Italia S.p.A.

Via E. Andolfato, 10 I - 20126 MILANO Tel. +39 02 25 20 12 -1 Fax +39 02 25 20 12 -65 e-mail: info@tungaloy.it www.tungaloy-eu.com

Tungaloy France S.a.r.l.

www.tungaloy-eu.com

6, Avenue des Andes F - 91952 COURTABOEUF CEDEX Tel. +33 (01) 64 86 43 00 Fax +33 (01) 69 07 78 17 e-mail: info@tungaloy.fr

Tungaloy Central Europe s.r.o.

4D Center Building B 10F Kodanska 46 CZ - 10100 Praha 10 Tel. +420 - 2 72 65 22 18 Fax +420 - 2 34 06 42 70 e-mail: info@tungaloy.cz

Ausgehändigt durch:

www.tungaloy-eu.com

ISO 9001 certified QC00J0056 18/10/1996 **Tungalov Corporation** ISO 14001 certified EC97J1123 26/11/1997 Production Division, **Tungaloy Corporation**